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Abstract. Two infinite bands of equidistant potential curves cross each other forming patterns
which are periodic both in time and in energy. The dependence of the quasi-energy on the
quasi-momentum (related to the translations along the energy axis) manifests zone structure
analogous to that known in solid state physics. The properties of the zones are analysed.

Recently a quantum model problem was considered with the crossing of two bands of
potential curves [1–3]. Mathematically it implies the solution of the time-dependent
Schr̈odinger equation in matrix form. The original (diabatic) basis vector states are
subdivided in two groups, each of them being infinitely dimensional. The Hamiltonian
matrixH within each of these subspaces is diagonal with the diagonal elements respectively

Hnn(t) = ωn+ βt (1)

and

Hnn(t) = ωn− βt. (2)

These matrix elements are nameddiabatic potential curvesbearing in mind their dependence
on time t . The parameterω is the level spacing within each of two bands (1) or (2);β is
the slope of potential curves which differs in sign for the first and the second bands. Hence
we have twoparallel and equidistantbands oflinear diabatic potential curves crossing each
other. All the matrix elements of the Hamiltonian between the basis vectors belonging to
different subspacesare assumed to be the same and equal to theinteraction (or coupling)
parameterV which is time independent.

The eigenvalues of the HamiltonianH(t) calculated for the fixed timet are generally
namedadiabatic potential curves(as functions of timet). For the model under consideration
they were obtained [1] as

EN±(t) = ± ω

2π
cos−1

(
ω2− π2V 2

ω2+ π2V 2
cos

2πβt

ω

)
+Nω. (3)

Each adiabatic curve is labelled by the double subscript± andN , whereN is an integer
(N = 0,±1,±2, . . .). It is convenient [2] to characterize the coupling by the parameters

(06 s 6 1
2) instead ofV :

tanπs ≡ πV

ω
. (4)

0305-4470/97/082807+04$19.50c© 1997 IOP Publishing Ltd 2807



2808 V N Ostrovsky

Then (3) is rewritten as

EN±(t) = ± ω

2π
cos−1

(
cos 2πs cos

2πβt

ω

)
+Nω. (5)

We will use the shortened notationE0(t) ≡ E0+(t).
There are numerous physical realizations of the model† as already discussed [1, 3].

Therefore the properties of the model seem to deserve study. Some of them are the subject
of the present communication.

The adiabatic eigenstatescorresponding to the eigenvalues (3) or (5) were found by
Demkov and Ostrovsky ([1], see formulae (2.1), (2.3) and (2.6)) and presented in a more
compact form by Demkovet al ([2], see formula (16)), where they were denoted asψ̃±,N (t).

An arbitrary time-dependent solution of the Schrödinger equation can be expanded over
the adiabatic basis

9(t) =
∑
N

[c+,N (t)ψ̃+,N (t)+ c−,N (t)ψ̃−,N (t)] (6)

where the coefficients obey the system of equations

i
dc+,N

dt
= EN+(t)c+,N +

∑
M

〈ψ̃+,N |H̃ (t)|ψ̃−,M〉c−,M

i
dc−,N

dt
= EN−(t)c−,N +

∑
M

〈ψ̃−,N |H̃ (t)|ψ̃+,M〉c+,M. (7)

The right-hand side of these equations contains some matrix elements which can be
considered as the matrix elements of the effective Hamiltonian in the adiabatic basis. They
were obtained by Harmin [3] in the simple explicit form

〈ψ̃−,N |H̃ (t)|ψ̃+,M〉 = −〈ψ̃−,M |H̃ (t)|ψ̃+,N 〉
= i

πβ

ω
sin(2πs)

(−1)N−M−1

[2πE0(t)/ω − π(N −M)]2
. (8)

Note that the direct coupling inside the subspaces of adiabaticψ̃+,N or ψ̃−,N states is absent,
i.e.

〈ψ̃+,N | H̃ (t)|ψ̃+,M〉 = 〈ψ̃−,N |H̃ (t)|ψ̃−,M〉 = 0. (9)

An advantage of the adiabatic representation is that the adiabatic potential curves (5)
and the matrix elements (8) are explicitly periodic in timet with the periodT1 = ω/β.
In addition, the system retains the specific property which it also has in the diabatic basis
[1]. Namely, equations (7) are invariant under ‘translation in the indices’:{N,M} ⇒
{N + J,M + J } for an arbitrary integerJ . In the adiabatic basis this follows from the fact
that the coupling (8) depends only on the difference of indicesN −M. This transformation
can also be considered as atranslation along the energy axis. Invariance under such a
transformation is a unique property of the model under consideration.

In order to fully account for this translational invariance, we look for the solution of
(7) in the form, which is analogous to the Bloch wavefunctions for the electron in the
space-periodic lattice:

c±,N (t) = exp[iN(κ + ωt)]C±(t). (10)

† Here we add only that the recent paper by Zobay and Alber [4] treats the wave packets of electronic states in
Rydberg atoms under laser field and presents the plot of energies for the dressed Rydberg states (figures 9(a) and
(b)) which essentially coincides with the plots of adiabatic curves (3) shown in figure 1 of [1].
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Hereκ is the analogue of quasi-momentum introduced in the solid state physics. It can be
checked easily using (5), (7) and (8) thatC+(t) andC−(t) do not depend on the indexN .
These functions obey a system of two equations:

i
d

dt
C+(t) = E0(t)C

+(t)− iG(κ, t)C−(t)

i
d

dt
C−(t) = −E0(t)C

−(t)+ iG(κ, t)C+(t) (11)

where

G(κ, t) = πβ

ω
sin(2πs)

∞∑
m=−∞

exp[−im(κ + ωt)+ iπm]

[2πE0(t)/ω − πm]2

= 2πβ

ω
sin(2πs)

∞∑
m=0

(−1)m cos[m(κ + ωt)]
[2πE0(t)/ω − πm]2

. (12)

In the latter representation the functionG(κ, t) is explicitly real. Note thatC+ andC−

depend parametrically onκ, although this dependence is suppressed in the notations.
At this stage we can note that the periodicity issue for the problem under consideration

is not that simple. In order to discuss it we introduce the function

G(κ, t1, t2) = 2πβ

ω
sin(2πs)

∞∑
m=0

(−1)m cos[m(κ + ωt2)]
[2πE0(t1)/ω − πm]2

. (13)

For t1 = t2 = t it coincides with the function (12). We see that the function (13) has the
periodT1 = ω/β in the ‘time’ variablet1 and the periodT2 = 2π/ω in the ‘time’ variable
t2. The second periodT2 is the period for the revival of an arbitrary wave packet in the
system with equidistant energy levels. Generally the periodsT1 andT2 are incommesurable.
Thus, in fact, we have a doubly-periodic problem which is somewhat hidden in the other
representations.

Furthermore, we consider the special case with equal periods:T1 = T2 ≡ T which
imposes a restriction on the system parameters,ω2 = 2πβ.

The non-stationary systems, periodic in time, are conventionally described using the
quasi-energy (or Floquet-state) formulation (see, for instance, [5]). Namely, one looks for
the solutionsψε(t) with the definite quasi-energyε. Such states have to satisfy the condition
ψε(t + T ) = exp(iεT )ψε(t), whereT is the period.

In our case we take some fixed value of the quasi-momentumκ and look for the
quasi-energetic solutions of (11). Thus the quasi-energy is obtained as some function of
the quasi-momentumε(κ). In solid state physics the dependence of energy on the quasi-
momentum manifests universally known zone structure. It is interesting to construct its
analogue in the present quite unconventional situation.

We did not succeed in the analytical solution of this problem (even the closed expression
for the coupling functionG(κ, t) (12) cannot be obtained for arbitrary values of the
arguments). However, the numerical treatment does not pose any problem. The equations
(11) were solved numerically on the interval 06 t 6 T and the propagation matrix was
diagonalized; its eigenvalues are expressed via the quasi-energies as exp(iεT ). There are
two values of the quasi-energy differing by sign; below we will refer to the positive one
(see figure 1). Note that the functionε(κ) depends parametrically on the couplingV (or s).

Some general properties of the functionε(κ) can be established.
(1) The functionε(κ) is even and periodic with period 2π like the functionG(κ, t).

Thus the interval [0, 2π ] is ‘the unit cell’ on theκ axis, i.e. analogue of the Brillouin zones
considered in solid state physics.
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Figure 1. Zone structure: reduced quasi-energyε/ω as a function of the reduced quasi-
momentumκ/(2π) for various values of the coupling parameters indicated in the figure.

(2) The functionG(κ, t) does not change under the transformation{κ ⇒ 2π − κ, t ⇒
T − t}. Thereforeε(κ) is symmetric with respect to the pointκ = π .

(3) There is a less evident relation between the functionsε(κ) for various values of the
coupling parameter. Namely, the transformation{s ⇒ 1

2 − s, κ ⇒ κ + π, t ⇒ t + 1
2T }

does not change the functionsE0(t) andG(κ, t). Hence we have the relationε(κ, s) =
ε(κ + π, 1

2 − s). Therefore it is sufficient to consider the domain 06 s 6 1
4.

(4) If the coupling is absent (s = 0), then the quasi-energy does not depend onκ and
can easily be evaluated as the adiabatic energyE0(t) averaged over the period:ε = 1

4ω.
Note that even for weak coupling quite strong deviations appear from this value (figure 1).

(5) There is another less trivial case when the zone is completely flat. Namely, for
s = 1

4 the adiabatic potential curves become constant [1]:E0(t) = 1
4ω. In this case the

functionG(κ, t) depends only on the linear combination of its arguments,κ + ωt . Clearly
this leads to some constant value for the functionε(κ). The latter is obtained from the
numerical calculations as 0.3965ω.

As a summary, we have considered a unique problem with periodicity both in energy and
time and have found an unconventional zone structure for this system in the quasi-energy
as a function of the quasi-momentum.
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